Reppert and colleagues were particularly interested in one of these factors: CRY, a cryptochrome protein that was initially discovered in plants and was subsequently found in the fly and the mouse. In the fly, CRY functions as a blue light photoreceptor, allowing light access to clock-containing cells. This enables the resetting of the clock by the light-dark cycle. In the mouse, CRY does not function to absorb
light; rather, it is one of the essential components that power the central clockwork enabling the feedback loop to continue. (In the mouse, light enters the clock through the animal's eyes. Given the function of CRY in flies and the role of light in migration, scientists presumed that the monarch's clock would resemble that of the fly. Reppert and his collaborators were stunned and elated to find that the clock of the butterfly was as spectacular as its migration. Genetic studies revealed that the monarch had not only the fly-like CRY, but also another cryptochrome that further tests identified as a new clock molecule in the butterfly. Surprisingly, this cryptochrome, dubbed CRY2, is more similar in structure to vertebrate CRY than to that of the fruit fly. Reppert and colleagues not only discovered the function of CRY2 in the monarch clock, but they also found that CRY2 may function to mark a critical neural pathway from the circadian clock to the sun compass. This clock-to-compass pathway provides an essential link between the clock and the sun compass, as both are necessary for successful orientation and navigation. As Reppert explains, "CRY2 appears to have a dual function-- as a core clock component and as an output molecule, linking the clock to the compass." Sciencedaily News.
No comments:
Post a Comment